
IARJSET ISSN (Online) 2393-802  

ISSN (Print) 2394- 588 
 

                  International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 3, Issue 8, August 2016 

 

Copyright to IARJSET                                    DOI 10.17148/IARJSET.2016.3818                                                  103 

Abstract, Correct By Construction and Faster 

Register Modeling of AMBA APB Bus 
 

Kiran J P
 1
, Dr. R Jayagowri

2 

Master of Technology, VLSI Design and Embedded Systems, BMSCE, Bangalore, India1 

Associate Professor, Electronics Department, BMSCE, Bangalore, India2 

 
Abstract: The SoC (System on Chip) uses AMBA APB as an on chip bus.APB is low bandwidth and low performance 

bus used to connect the peripherals like UART, Keypad, Timer and other peripheral devices to the bus architecture. 

This paper describes the design generation of AMBA APB (Advanced Peripheral Bus) protocol using Perl scripting 

language. Here main aim is to reduce human interface in design part so we can reduce common syntax errors. Per 

generates the Verilog design code of APB slave and its corresponding test bench, where all its specifications are there 

in XML script. This code is simulated in QuestaSim. Finally wave forms and code coverage reports are analyzed. 

 

Keywords: AMBA, APB, Perl, SoC, XML, XLS 

 

I. INTRODUCTION 
 

Earlier AMBA buses were mainly used for in 

microcontroller devices but now it is widely used in large 
range of ASICs and SoC parts including the application 

processors used in modern portable mobile devices like 

smartphones. AMBA is an open standard, on-chip 

interconnect specification for the purpose of connecting 

and managing functional blocks in a System-on-Chip 

(SoC).  

 

 
FIG.      AMBA Bus Architecture 

 

 So, for APB the bridge acts as the master and all the 

devices connected on the APB bus acts as the slave. The 

component on the high performance bus initiates the 

transactions and transfer them to the peripherals connected 

on the APB. So, at a time the bridge is used for 

communication between the high performance bus and the 

peripheral devices.  
As seen in the Figure. , AMBA bus architecture consists of 

three components, namely Advanced High Performance 

Bus (AHB), Advanced System Bus (ASB), Advanced 

Peripheral Bus (APB). AMBA AHB or ASB is high 

performance bus and has higher bandwidth. So the 

components requiring higher bandwidth like High 

Bandwidth on chip RAM high-performance ARM 

processor are connected to AHB/ASB. So, the components 

requiring lower bandwidth like the peripheral devices such 

as UART, Keypad, Timer and PIO (Peripheral Input 

Output) devices are connected to the APB.  

II. APB DESIGN 
 

The APB is the member of the AMBA 3 protocol famil 

which implements a low cost interface which minimizes 
the power consumption and reduces the interface 

complexity. Since APB has unpipelined protocol. 

Therefore, it interfaces to the low bandwidth peripherals 

that do not demand the high performance of the pipelined 

bus interface. All the signal transitions are associated with 

the rising edge of the clock which makes it simple to 

integrate APB peripherals into any design flow. 

 

 
FIG. 3 APB Slave 

 

III. PERL 

 

Perl a scripting language is used here to extract the design 
specification from XML where it is in specified formate to 

XLS spreadsheet. This XLS Spreadsheet is accessed to 

generate APB slave design code and its corresponding test 

bench. Here we need to develop two Perl script one to 

extract specification from XML to XLS and another to 

generate Verilog design file by accessing XLS. 



IARJSET ISSN (Online) 2393-802  

ISSN (Print) 2394- 588 
 

                  International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 3, Issue 8, August 2016 

 

Copyright to IARJSET                                    DOI 10.17148/IARJSET.2016.3818                                                  104 

 

 

 

 

 
       If any error 
       In designing 
 

 

 

 

 
                    If any 
                                                                               Error 

                                                                              Physical 
               Designing 

 

 
          Tape Out 

 

Design Flow Before 

 

 We have used three Perl modules to do this operation. 

They are  

XML: Simple: This module helps in reading XML script 

to extract the specification for our design. 

Spreadsheet: Write Excel: This module helps in writing 

the extracted spec. into XLS spreadsheet in required 
format. 

Spreadsheet: Parser Excel: This module helps in accessing 

the XLS sheet to generate APB verilog design file and test 

bench file. 
 

By using proposed method  
 

 

 

  
   Run Perl Script   
 
 

 

 
   Run Perl Script 2 

 
 

 

 

                                                                       

                                                                       

            

 

 

 

 

 
 

 
 

                Tape Out 
 

                      Design Flow After  

Here we are not getting any error after the design is done 

because it it generated from Perl script not by manually. 

At first we need to write Perl script for this APB slave 

design once it is done no need to write the same code 

again. We can generate the design code without any 

common syntax errors.  
 

IV. APB OPERATING CYCLE 

 

Figure.3 shows the basic state machine that represents 

operation of the peripheral bus. There are three states 

namely, IDLE, SETUP and ACCESS state  

 

 
Fig 3: State Diagram 

 

IDLE state is the default state in which no operation is 
being performed. The assertion of the PSEL signal 

indicates the beginning of the SETUP phase. The bus 

enters into the SETUP phase when the data transfer is 

required. The PWRITE, PADDR and PWDATA are also 

provided during this phase.  
 

The bus remains in the SETUP phase for one clock cycle 

and on the next rising edge of the clock, the bus will move 

to the ACCESS state. The assertion of the PENABLE 

signal indicates the start of the ACCESS phase. All the 

control signals, address, and the data signals remains 

stable during the transition from the SETUP phase to the 
ACCESS phase.  
 

In case of read operation the PRDATA is present on the 

bus during this phase. PENABLE signal also remain high 

for one clock cycle. If no further data transfer is required, 

the bus will move the IDLE state. But, if further data 

transfer is required then the bus will move to the SETUP 

phase. 
 

Write Cycle 

During the write transfer operation, the PSEL, PWRITE, 

PADDR and PWDATA signals are asserted at the T  clock 

edge which is called the SETUP cycle. At the next rising 

edge of the clock T2, the PENABLE signal and PREADY 
signal are asserted. This is called the ACCESS cycle. At 

the clock edge T3, PENABLE signal is disabled and if 

further data transfer is required, a high to low transition 

occurs on the PREADY signal. 

Design Specification in XML 

Extracted Specification in XLS 

Design Code Generated 

Verification Team 

Physical Design Team 

Testing Team 

Design Specification 

Design Team 

 

Verification Team 

Physical Design Team 

Testing Team 



IARJSET ISSN (Online) 2393-802  

ISSN (Print) 2394- 588 
 

                  International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 3, Issue 8, August 2016 

 

Copyright to IARJSET                                    DOI 10.17148/IARJSET.2016.3818                                                  105 

 
Fig. 4 Write Transfer 

 

Read Cycle 

During the read operation, the PSEL, PENABLE, 
PWRITE, PADDR signals are asserted at the clock edge T  

(SETUP cycle). At the clock edge T2, (ACCESS cycle), 

the PENABLE, PREADY are asserted and PRDATA is 

also read during this phase.  

 

 
Fig. 5 Read Transfer 

 

V. SIMULATION RESULTS FOR THE 

GENERATED DESIGN 

 

The design and the test bench generated using Perl in 

Verilog has been compiled using QuestaSim. The results 

show the write and read operation. It is evident from the 

figure that when PWRITE= , the address and data are 

written at the same clock edge. When PWRITE =0, the 

address is sent on a given clock edge and the data is read 

on the following clock edge. 

 

Write Cycle 

 

 
Simulation result for Write Cycle 

Read Cycle 

 

 
Simulation result for Read Cycle 

 

Coverage Report 

 

 
Coverage report for design and test file 

 

VI. CONCLUSION AND FUTURE WORK 

 

The advantage of this method is we can develop APB 

slave of any number of register with in less time. That too 

without having common syntax errors. Meaning re-

designing time of the same code reduces considerably 

.Also by generating suitable test bench the design code has 
been verified and validated. We can also check the code 

coverage of the same design code for its quality analysis. 

Till now we have used XLS sheet as intermediate between 

Perl script and Verilog code but now we making script to 

generate design code directly from using XML script 

without the interference of XLS sheet. 

 

ACKNOWLEDGEMENT 

 

I would like to thank  Mr. Prabhu Bhairi from Sevitech 

Systems, who had been guiding through out to complete 

the work successfully, and would also like to thank Dr. R 

Jayagowri, Associate Professor, ECE Department for 

extending  help & support in giving technical ideas about 

the paper and motivating to complete the work effectively 

& successfully. 

 

REFERENCES 

 
 . AMBA Specification (Rev2.0). http://www.arm.com  

2.  Yi-Ting Lin, Chien-Chou Wang, “AMBA APB bus potocol checker 

with efficient debugging mechanism”, IEEE International 

Symposium on Huang Circuits and Systems, Page(s). 928 – 93, 2008.  

3.  M. Dubois, Y. Savaria, “A generic APB bus for implementing high- 

speed locally synchronous islands”, Bois, G. Southeast Conference, 

Proceedings. IEEE, Page(s).    –  6, 2005.  

4.  ASB Example AMBA System Technical Reference Manual 

Copyright ©  998- 999 ARM Limited. 


